Correlative microscopy
Correlative microscopy is an approach that benefits from the imaging of the same object by at least two different techniques. With the ever-increasing demand for complex and more precise imaging, the pressure on the development of new technologies in microscopy is constantly growing. The term refers to a group of methods engaging multiple imaging techniques and correlating their data, which leads to surprising results and scientific discoveries.
Examples of correlative microscopy are many. E. g. Correlative Light and Electron Microscopy (CLEM), often used in the Life Science field, enables obtaining a complete overview of a cell, while at the same time analyze biomolecules in that same cell on the scale of a few nanometers. Other already available examples of correlative microscopy are SEM-Raman, AFM-Raman, SEM-FIB, AFM-SEM, etc.
We are pioneers of in-situ multimodal correlative imaging
The correlation of images from two microscopes can be limited by the difficult localization of the region of interest or incompatibility of data acquired by different instruments under different conditions. To achieve the best results possible, you need to obtain and variety of AFM modalities (AFM, C-AFM, KPFM, MFM) and SEM images (SE, BSE, EBIC, EDX) at the same time, under the same conditions and in a user-friendly way.
This can be achieved by unique CPEM (Correlative Probe and Electorn Microscopy) technology, developed by NenoVision. It represents a combination of complementary AFM and SEM that enables you to use the advantages of both these techniques via LiteScope AFM-in-SEM.
CPEM technology
CPEM has been developed for a variety of applications, representing a new patented technology of correlative imaging. It brings a solution synchronizing:
- the scanned area
- resolution and image distortion
- and enables to correlate both acquired AFM and SEM images in a real-time
With the CPEM technology developed by NenoVision, you can easily acquire AFM and SEM simultaneously and correlate them in real time. The CPEM brings new possibilities for advanced correlative imaging in a variety of fields such as Material Science, Nanostructures, Semiconductors, Life Sciences, and many more.
See also
Want more info? Feel free to...

Hematene: A sustainable 2D conductive platform for visible-light-driven photocatalytic ammonia decomposition
Researchers from Palacký University Olomouc and the Technical University of Ostrava have developed an eco-friendly method to make ultra-thin 2D hematene sheets, which could lead to better clean energy technology. All that with the assistance of our LiteScope.

Scanning Probe Microscopy controller with advanced sampling support
In this new article, our colleagues together with members of the Czech Metrology Institute describe the Digital Signal Processor in detail.

The AFM-in-SEM technique: True correlative sample analysis with the LiteScope
This new article describes how LiteScope combines multiple modes of AFM and SEM and how such approach to surface analysis can provide researchers with a significant amount of information about their materials.